Fractional Coverings, Greedy Coverings, and Rectifier Networks

نویسندگان

  • Dmitry Chistikov
  • Szabolcs Iván
  • Anna Lubiw
  • Jeffrey Shallit
چکیده

A rectifier network is a directed acyclic graph with distinguished sources and sinks; it is said to compute a Boolean matrix M that has a 1 in the entry (i, j) iff there is a path from the jth source to the ith sink. The smallest number of edges in a rectifier network that computes M is a classic complexity measure on matrices, which has been studied for more than half a century. We explore two well-known techniques that have hitherto found little to no applications in this theory. Both of them build upon a basic fact that depth-2 rectifier networks are essentially weighted coverings of Boolean matrices with rectangles. We obtain new results by using fractional and greedy coverings (defined in the standard way). First, we show that all fractional coverings of the so-called full triangular matrix have large cost. This provides (a fortiori) a new proof of the n logn lower bound on its depth-2 complexity (the exact value has been known since 1965, but previous proofs are based on different arguments). Second, we show that the greedy heuristic is instrumental in tightening the upper bound on the depth-2 complexity of the Kneser-Sierpiński (disjointness) matrix. The previous upper bound is O(n1.28), and we improve it to O(n1.17), while the best known lower bound is Ω(n1.16). Third, using fractional coverings, we obtain a form of direct product theorem that gives a lower bound on unbounded-depth complexity of Kronecker (tensor) products of matrices. In this case, the greedy heuristic shows (by an argument due to Lovász) that our result is only a logarithmic factor away from the “full” direct product theorem. Our second and third results constitute progress on open problems 7.3 and 7.5 from a recent book by Jukna and Sergeev (in Foundations and Trends in Theoretical Computer Science (2013)). Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering compact metric spaces greedily

Abstract. A general greedy approach to construct coverings of compact metric spaces by metric balls is given and analyzed. The analysis is a continuous version of Chvátal’s analysis of the greedy algorithm for the weighted set cover problem. The approach is demonstrated in an exemplary manner to construct efficient coverings of the n-dimensional sphere and n-dimensional Euclidean space to give ...

متن کامل

Good coverings of Hamming spaces with spheres

The covering radius problem has been considered by many authors (e.g. [ 1, 5, 61). Finally, let t(n, k) be the minimum possible covering radius for an (n, k) code and k(n, p) the minimum possible dimension of a code with covering radius p. The study of t(n, k) was initiated by Karpovsky. For a survey of these questions, see ]41. The main goal of this paper is to find good linear coverings. The ...

متن کامل

Rough matroids based on coverings

The introduction of covering-based rough sets has made a substantial contribution to the classical rough sets. However, many vital problems in rough sets, including attribution reduction, are NP-hard and therefore the algorithms for solving them are usually greedy. Matroid, as a generalization of linear independence in vector spaces, it has a variety of applications in many fields such as algor...

متن کامل

ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS

Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017